Note
Go to the end to download the full example code.
Glass Symmetry from Vectors#
This example shows how to identify symmetry (in a glassy system but this could be useful other places) by looking at the angles between 3 vectors in the diffraction pattern at some radial ring in k to identify groups of 3 vectors that are subtended by the same angle.
This is a very simple example with more detailed examples to come.
import pyxem as pxm
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
import numpy as np
First we load the data and do some basic processing
s = pxm.data.pdnip_glass(allow_download=True)
s.axes_manager.signal_axes[0].offset = -23.7
s.axes_manager.signal_axes[1].offset = -19.3
s.filter(gaussian_filter, sigma=(1, 1, 0, 0), inplace=True) # only in real space
s.template_match_disk(disk_r=5, subtract_min=False, inplace=True)
vectors = s.get_diffraction_vectors(threshold_abs=0.5, min_distance=3)
0%| | 0/17 [00:00<?, ?it/s]
6%|▌ | 1/17 [00:01<00:20, 1.26s/it]
18%|█▊ | 3/17 [00:02<00:11, 1.26it/s]
29%|██▉ | 5/17 [00:03<00:08, 1.41it/s]
41%|████ | 7/17 [00:05<00:06, 1.48it/s]
53%|█████▎ | 9/17 [00:06<00:05, 1.52it/s]
65%|██████▍ | 11/17 [00:07<00:03, 1.54it/s]
76%|███████▋ | 13/17 [00:08<00:02, 1.56it/s]
88%|████████▊ | 15/17 [00:10<00:01, 1.57it/s]
100%|██████████| 17/17 [00:10<00:00, 1.68it/s]
0%| | 0/33 [00:00<?, ?it/s]
3%|▎ | 1/33 [00:00<00:26, 1.21it/s]
15%|█▌ | 5/33 [00:01<00:08, 3.37it/s]
27%|██▋ | 9/33 [00:02<00:05, 4.04it/s]
39%|███▉ | 13/33 [00:03<00:04, 4.36it/s]
52%|█████▏ | 17/33 [00:04<00:03, 4.57it/s]
64%|██████▎ | 21/33 [00:04<00:02, 4.64it/s]
76%|███████▌ | 25/33 [00:05<00:01, 4.68it/s]
88%|████████▊ | 29/33 [00:06<00:00, 4.71it/s]
100%|██████████| 33/33 [00:06<00:00, 4.98it/s]
0%| | 0/33 [00:00<?, ?it/s]
100%|██████████| 33/33 [00:00<00:00, 541.04it/s]
Now we can convert to polar vectors
pol = vectors.to_polar()
0%| | 0/33 [00:00<?, ?it/s]
64%|██████▎ | 21/33 [00:00<00:00, 198.81it/s]
100%|██████████| 33/33 [00:00<00:00, 215.50it/s]
This function gets the inscribed angle accept_threshold is the maximum difference between the two angles subtended by the 3 vectors
ins = pol.get_angles(min_angle=0.05, min_k=0.3, accept_threshold=0.1)
flat_vect = ins.flatten_diffraction_vectors()
fig, axs = plt.subplots()
axs.hist(flat_vect.ivec["delta phi"].data, bins=60, range=(0, 2 * np.pi / 3))
axs.set_xlabel("delta phi")
axs.set_xticks(
[0, np.pi / 5, np.pi / 4, 2 * np.pi / 5, np.pi / 2, np.pi / 3, 3 * np.pi / 5]
)
axs.set_xticklabels(
[
0,
r"$\frac{\pi}{5}$",
r"$\frac{\pi}{4}$",
r"$\frac{2\pi}{5}$",
r"$\frac{\pi}{2}$",
r"$\frac{\pi}{3}$",
r"$\frac{3\pi}{5}$",
]
)

0%| | 0/33 [00:00<?, ?it/s]
9%|▉ | 3/33 [00:00<00:01, 22.86it/s]
21%|██ | 7/33 [00:00<00:00, 26.11it/s]
30%|███ | 10/33 [00:00<00:01, 22.58it/s]
39%|███▉ | 13/33 [00:01<00:03, 5.60it/s]
45%|████▌ | 15/33 [00:01<00:02, 6.60it/s]
52%|█████▏ | 17/33 [00:02<00:02, 6.40it/s]
58%|█████▊ | 19/33 [00:02<00:02, 5.29it/s]
64%|██████▎ | 21/33 [00:03<00:02, 5.26it/s]
70%|██████▉ | 23/33 [00:03<00:01, 6.44it/s]
76%|███████▌ | 25/33 [00:03<00:01, 6.45it/s]
82%|████████▏ | 27/33 [00:04<00:01, 4.35it/s]
88%|████████▊ | 29/33 [00:04<00:00, 5.14it/s]
94%|█████████▍| 31/33 [00:04<00:00, 5.29it/s]
100%|██████████| 33/33 [00:04<00:00, 6.72it/s]
0%| | 0/2 [00:00<?, ?it/s]
100%|██████████| 2/2 [00:00<00:00, 5336.26it/s]
[Text(0.0, 0, '0'), Text(0.6283185307179586, 0, '$\\frac{\\pi}{5}$'), Text(0.7853981633974483, 0, '$\\frac{\\pi}{4}$'), Text(1.2566370614359172, 0, '$\\frac{2\\pi}{5}$'), Text(1.5707963267948966, 0, '$\\frac{\\pi}{2}$'), Text(1.0471975511965976, 0, '$\\frac{\\pi}{3}$'), Text(1.8849555921538759, 0, '$\\frac{3\\pi}{5}$')]
cycle through colors in groups of 3 for each symmetry cluster
points = ins.to_markers(
color=["b", "b", "b", "g", "g", "g", "y", "y", "y", "r", "r", "r"]
)
original_points = vectors.to_markers(color="w", alpha=0.5)
s.axes_manager.indices = (67, 55) # jumping to a part with some symmetric structure
s.plot(vmin=0.0)
s.add_marker(points)
s.add_marker(original_points)
0%| | 0/33 [00:00<?, ?it/s]
67%|██████▋ | 22/33 [00:00<00:00, 218.99it/s]
100%|██████████| 33/33 [00:00<00:00, 216.57it/s]
0%| | 0/33 [00:00<?, ?it/s]
100%|██████████| 33/33 [00:00<00:00, 1011.79it/s]
0%| | 0/33 [00:00<?, ?it/s]
100%|██████████| 33/33 [00:00<00:00, 1007.63it/s]
Total running time of the script: (0 minutes 45.934 seconds)